EVE 376
3.05 .2004

Formulating Probability of Error for Binary PAM

$$
\begin{array}{ll}
s_{1}(t)=\sqrt{\frac{\varepsilon_{6}}{T}} & 0<t<T, s_{2}(t)=-\sqrt{\frac{\varepsilon_{b}}{T}} 0<t<T \\
s_{1}=\left[\varepsilon_{b}^{1 / 2}\right] & S_{2}=\left[-\varepsilon_{b}^{1 / 2}\right], \varepsilon_{b}=\int_{0}^{T} S_{m}^{2}(t) d t
\end{array}
$$

Block diagramme of Matched Filter Correlator

Assume s, was transmitted

$$
\int_{0}^{T} r(t) \psi(t) d t=\sqrt{\varepsilon_{b}}+n_{1}=r(\text { vector })
$$

Secasion Region for $s_{2} \leftrightarrow \leftrightarrow$ Decision Region for s_{1}

Binary PAM -31

Since it is one dimensional spice 12, will always be along $\psi(t)$ axis. Assuming that $S_{1}(t)$ and $S_{2}(t)$ have the representation above having equal energy.

Thus the threshold of decision is set to zero Then error will result if $n, \leqslant-\varepsilon_{6}^{1 / 2}$ The same result could be obtained via $C(r, \mathrm{sm})$ metric. In the above case of J, being transmitted

$$
\begin{aligned}
c\left(r, s_{1}\right) & =2 r \cdot s_{m}-\left\|s_{m}\right\|^{2} \\
& =2\left[\sqrt{\varepsilon_{b}}+n,\right] \cdot\left[\varepsilon_{b}^{1 / 2}\right]-\varepsilon_{b} \\
& =\varepsilon_{b}+2,2, \varepsilon_{b}^{1 / 2} \\
c\left(1, s_{2}\right) & =2\left[\varepsilon_{b}^{1 / 2}+n,\right]\left[-\varepsilon_{b}^{1 / 2}\right]-\varepsilon_{b} \\
& =-3 \varepsilon_{b}-2 n, \varepsilon_{b}^{1 / 2}
\end{aligned}
$$

For error to occur $c\left(r, s_{2}\right)>c\left(r, s_{1}\right)$ or

$$
\begin{gathered}
-3 \varepsilon_{b}-2 n, \varepsilon_{b}^{1 / 2}>\varepsilon_{b}+2 n, \varepsilon_{b}^{1 / 2} \\
n_{1} \leq-\varepsilon_{b}^{1 / 2}
\end{gathered}
$$

Note that due to symmetry of Gaussian distribution

Binary PAM -5.2

The definition of P_{e} is based on $E_{q}(7.555)$
that is

$$
p\left(e / s_{n}\right)=\int_{R_{m}^{c}} f\left(r / s_{m}\right) d r
$$

Rm means the region of correct decision
R_{m}^{e} means the region oulside the region of correct decision, ie it the complimentary is k_{c}

Note that

$$
\begin{aligned}
& f\left(r / s_{m}\right)=\frac{1}{\left(\pi N_{0}\right)^{1 / 2}} e^{-\left(r-s_{m}\right)^{2} / N_{0}} \text {, hence } \\
& \int_{-\infty}^{0} \frac{1}{\left(\pi N_{0}\right)^{1 / 2}} e^{-\left(r-s_{m}\right)^{2} / N_{0}} d r=\frac{1}{\left(\pi N_{0}\right)^{1 / 2}} \int_{-\infty}^{-\sqrt{\varepsilon_{b}}} e^{-x^{2} / N_{0}} d x
\end{aligned}
$$

same as n_{1} in tegral.
$-\infty<n,<-\varepsilon_{b}^{1 / 2}$ and $\varepsilon_{6}^{1 / 2}<n,<\infty$
will give the same area (see the figure below)

Since $n(t)$ is aero mean Gaussian,

$$
\begin{aligned}
f\left(n_{1}\right) & =\frac{1}{\left(\pi N_{0}\right)^{1 / 2}} e^{-n_{1}^{2} / N_{0}} \\
p_{c} & =\operatorname{prob}\left(\varepsilon_{6}^{1 / 2}<n_{1}<\infty\right) \leftarrow\left(\text { This in } p\left(e / s_{2}\right)\right. \\
& =\int_{\sqrt{\varepsilon_{6}}}^{\infty} \frac{1}{\left(\pi N_{0}\right)^{1 / 2}} e^{-n_{1}^{2} / N_{0}} d n_{1}
\end{aligned}
$$

Make the substitution $\frac{n_{1}^{2}}{N_{0}}=\frac{\pi^{2}}{2}$

$$
\mathrm{Pe}(e / s, \text { binary PAM })=\frac{1}{(2 \pi)^{1 / 2}} \int_{\sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}}^{\infty} e^{-x^{2} / 2} d x
$$

$P_{e}=P\left(\sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right)$ same as $E_{q}(7.6 .8)$ of Proatis Binary PAM - 5.3

The above is the same as binary Pat with antipodal signaling

If othogonal binary pig is used, the following is obtaincat

$$
P_{e}=Q\left(\sqrt{\frac{\varepsilon_{b}}{N_{0}}}\right)
$$

hence P_{e} (othogonal binary Pst)
Pe (antipodal binary psi)

$$
4.05 .2005
$$

Addendum for orthogonal binary PSK (la) Note that the above $p_{e}=\rho\left(\sqrt{\frac{2 \varepsilon_{b}}{N_{0}}}\right)$ is also valid for binary PSt where $s,(t)$ and $s_{z}(t)$ are antipodal signals, ie.,

Of course $s,(t)$ and $s_{2}(t)$ must be equiprobable.
We observe that in Q function ε_{b} may oleo be expressed in terms of the distance between end of vectors s, and s_{2}. In this manner

$$
\begin{aligned}
& d_{12}=\sqrt{\varepsilon_{b}}+\sqrt{\varepsilon_{b}}=2 \sqrt{\varepsilon_{b}} \\
& 2 \varepsilon_{b}=d_{12}^{2} / 2 \quad \text { or } \quad d_{12}^{2}=4 \varepsilon_{b}
\end{aligned}
$$

Hence Pe may be written as

$$
P_{e}=\varphi\left(\sqrt{\frac{d, 2^{2}}{2 N_{0}}}\right)^{2 \varepsilon_{6}}
$$

See also Prockis 2000 pp. 406-407
Binary PAM -54

Therefore by taking the binary orthogonal pas as follows

d_{12} (for orthogonal binary Ask) $=\sqrt{2 \varepsilon_{6}}$
or $d_{2}^{2}=2 \varepsilon_{6}$, thus
$P_{e}($ for orthogonal binary psk$)=q\left(\sqrt{\frac{\varepsilon_{b}}{N_{0}}}\right)$
Ho expected Pe_{e} of orthogonal case is has larger values than P_{e} of antipodal case.

The above result may hove been scheived by examining the correlation metrics values

For this case, the waveform illustrations are reproduced below

so $s,(t)=\sqrt{\varepsilon_{b}} \psi_{1}(t)+0 W_{2}(t) s,=\left[\sqrt{\varepsilon_{b}} ; 0\right]$

$$
J_{2}(t)=0 \psi_{1}(t)+\sqrt{\varepsilon_{b}} \psi_{2}(t) \quad S_{2}=\left[0 ; \sqrt{\varepsilon_{6}}\right]
$$

This way the op from the correlstors (or INF)
if s, was transmitted

$$
r_{1}=\sqrt{\varepsilon_{b}}+n_{1} \quad, \quad r_{2}=n_{2} \quad \text { or } r=\left[\sqrt{\varepsilon_{b}}+n_{1}, n_{2}\right]
$$

Normally test against correlator metrics for s, and S_{2}. should yod that $\left(r, s_{1}\right)>G\left(r_{1}, s_{2}\right)$ So in case of error the opposite should occur, that is $C\left(r, s_{2}\right)>C(r, s$, This is shown below

$$
\begin{aligned}
& C\left(r, s_{1}\right)=2 r \cdot s_{1}-\left\|s_{1}\right\|^{2} \\
&=2\left[\sqrt{\varepsilon_{b}}+n_{1}, n_{2}\right]\left[\begin{array}{l}
\sqrt{\varepsilon_{b}} \\
0
\end{array}\right]-\varepsilon_{b} \\
&=2\left(\varepsilon_{b}+\varepsilon_{b}^{1 / 2} n_{1}\right)-\varepsilon_{b} \\
& C\left(r, s_{2}\right)=2\left(s_{2}-\left\|s_{2}\right\|^{2}\right. \\
&=2\left[\sqrt{\varepsilon_{b}}+n_{1}, n_{2}\right][0 \\
&\left.\sqrt{\varepsilon_{b}}\right]-\varepsilon_{b} \\
&=2 n_{2} \varepsilon_{b}^{1 / 2}-\varepsilon_{b}
\end{aligned}
$$

The condition of $C\left(r, s_{2}\right) \geqslant C(r, s$,

$$
\begin{gathered}
\sqrt{\varepsilon_{b}}\left(2 n_{2}-1\right) \geqslant \sqrt{\varepsilon_{b}}\left(2 \sqrt{\varepsilon_{b}}+2 n_{1}-1\right) \\
2 n_{2}-2 n_{1} \geqslant 2 \sqrt{\varepsilon_{b}} \\
n_{2}-n_{1} \geqslant \varepsilon_{6}^{1 / 2}
\end{gathered}
$$

n_{1} and n_{2} are independent Gaussian variables with zero mean and each with $\mathrm{N}_{\mathrm{o}} / 2$, hence $x=n_{2}-n$, is again with zero mean, but with No variance $\left(N_{0} / 2+N_{0} / 2=N_{0}\right)$

Hence

$$
\left.f\left(n_{2}-\right)_{1}=x\right)=\frac{1}{\sqrt{2 \pi N N_{0}}} e^{-x^{2} / 2 N_{0}}
$$

$$
\begin{aligned}
& \text { Pe }(\text { of orthogonal binary } p, k)=f(x) \text { being larger } \\
& \text { than } \sqrt{\varepsilon} \\
&=\frac{1}{\sqrt{2 \pi N_{0}}} \int_{\sqrt{\varepsilon_{b}}}^{\infty} e^{-x^{2} / 2 N_{0}} \\
&=\frac{1}{\sqrt{2 \pi}} \int_{\sqrt{\varepsilon_{b} / N_{0}}}^{\infty} e^{-x^{2}} d x \\
&=9\left[\sqrt{\frac{\varepsilon_{b}}{N_{0}}}\right]
\end{aligned}
$$

The same result as before

