Çankaya University - ECE Department - ECE 376 (MT)

Student Name :
Student Number :

Date : 27.03.2017
Open Source Exam

Questions

1. (70 Points) The constellation diagram of the signal set, $s_{1}(t)$ to $s_{8}(t)$ is given in Fig. 1.1.
a. Identify the type of modulation and dimensionality in this signal set. Write mathematical expression for $s_{1}(t)$ to $s_{8}(t)$ and plot them. Find the corresponding basis functions, $\psi_{1}(t) \cdots \psi_{N}(t)$ and plot $\psi_{1}(t) \cdots \psi_{N}(t)$. Write for the signal vectors \mathbf{s}_{1} to \mathbf{s}_{8}, and plot the corresponding constellation diagram. Find the distance between signal vector ends.
b. Draw the demodulator as correlator and matched filter. Assuming that the signal $s_{1}(t)$ is sent from the transmitted, find the outputs of the correlator and matched filter.
c. Find the probability of error and decision regions via the evaluations of correlation metrics $C \mathbf{r}, \mathbf{s}_{m}$ again assuming $s_{1}(t)$ was transmitted.

Fig. 1.1 The constellation diagram for Q 1 .
Solution : a. From the given constellation in Fig. 1, it is easy to see that we have 8 QAM The dimensionality is two.

So we can adapt the following common orthonormalized basis functions,

$$
\psi_{1} t=\left\{\begin{array}{ll}
\sqrt{2 / T} & 0 \leq t \leq T / 2 \tag{1.1}\\
0 & \text { otherwise }
\end{array} \quad \psi_{2} t=\left\{\begin{array}{lc}
\sqrt{2 / T} & T / 2 \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

Fig. 1.2 The orthonormalized basis functions for Q 1 .
By using (1.1), Figs. 1.1 and 1.2, we obtain the followings for the time waveforms of $s_{1}(t)$ to $s_{8}(t)$

Fig. 1.3 Time waveforms of $s_{1}(t) \cdots s_{8}(t)$ for Q1
From Fig. 1.3, it is possible to write the following expressions for $s_{1}(t)$ to $s_{8}(t)$
$s_{1}(t)=\left\{\begin{array}{l}A \sqrt{2} \quad 0 \leq t \leq T / 2 \\ 0\end{array} \quad\right.$ otherwise $\quad, s_{1}(t)=A \sqrt{T} \psi_{1}(t), \mathbf{s}_{1}=\left[s_{11}, s_{12}\right]=[A \sqrt{T}, 0], \varepsilon_{s_{1}}=\left\|\mathbf{s}_{1}\right\|^{2}=A^{2} T$
$s_{2}(t)=\left\{\begin{array}{lr}\frac{A}{\sqrt{2}} & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{array}, s_{2}(t)=\frac{A}{2} \sqrt{T} \psi_{1}(t)+\frac{A}{2} \sqrt{T} \psi_{2}(t), \mathbf{s}_{2}=\left[s_{21}, s_{22}\right]=\left[\frac{A}{2} \sqrt{T}, \frac{A}{2} \sqrt{T}\right], \varepsilon_{s_{3}}=\left\|\mathbf{s}_{2}\right\|^{2}=\frac{A^{2} T}{2}\right.$
$s_{3}(t)=\left\{\begin{array}{c}A \sqrt{2} \quad T / 2 \leq t \leq T \\ 0 \quad \text { otherwise }\end{array}, s_{3}(t)=A \sqrt{T} \psi_{2}(t), \mathbf{s}_{3}=\left[s_{31}, s_{32}\right]=[0, A \sqrt{T}], \varepsilon_{s_{3}}=\left\|\mathbf{s}_{3}\right\|^{2}=A^{2} T\right.$
$s_{4}(t)= \begin{cases}-\frac{A}{\sqrt{2}} & 0 \leq t \leq T / 2 \\ \frac{A}{\sqrt{2}} & T / 2 \leq t \leq T \quad, \\ 0 & \text { otherwise }\end{cases}$
$s_{5}(t)=\left\{\begin{array}{ll}-A \sqrt{2} & 0 \leq t \leq T / 2 \\ 0 & \text { otherwise }\end{array}, s_{5}(t)=-A \sqrt{T} \psi_{1}(t), s_{5}=\left[s_{51}, s_{52}\right]=\left[\begin{array}{ll}-A \sqrt{T}, & 0\end{array}\right], \varepsilon_{s 8}=A^{2} T\right.$
$s_{6}(t)=\left\{\begin{array}{ll}-\frac{A}{\sqrt{2}} & 0 \leq t \leq T \\ 0 & \text { otherwise }\end{array}, s_{6}(t)=-\frac{A}{2} \sqrt{T} \psi_{1}(t)-\frac{A}{2} \sqrt{T} \psi_{2}(t), \mathrm{s}_{6}=\left[s_{61}, s_{62}\right]=\left[-\frac{A}{2} \sqrt{T},-\frac{A}{2} \sqrt{T}\right], \varepsilon_{s_{5}}=\frac{A^{2} T}{2}\right.$
$s_{7}(t)=\left\{\begin{array}{l}-A \sqrt{2} T / 2 \leq t \leq T \\ 0 \quad \text { otherwise }\end{array}, s_{7}(t)=-A \sqrt{T} \psi_{2}(t), \mathbf{s}_{7}=\left[s_{77}, s_{72}\right]=[0,-A \sqrt{T}], \varepsilon_{s,}=A^{2} T\right.$
$s_{8}(t)=\left\{\begin{array}{l}\frac{A}{\sqrt{2}} 0 \leq t \leq T / 2 \\ -\frac{A}{\sqrt{2}} T / 2 \leq t \leq T, s_{8}(t)=\frac{A}{2} \sqrt{T} \psi_{1}(t)-\frac{A}{2} \sqrt{T} \psi_{2}(t), \mathbf{s}_{8}=\left[s_{s_{1}}, s_{82}\right] \\ 0 \quad \text { otherwise }\end{array}\right.$
$d_{12}=d_{18}=d_{23}=d_{34}=d_{45}=d_{56}=d_{78}=d_{\text {min }}=A \sqrt{\frac{T}{2}}=\sqrt{\varepsilon_{s_{8}}}=\sqrt{\varepsilon_{s_{4}}}=\sqrt{\varepsilon_{s_{8}}}=\sqrt{\varepsilon_{s_{4}}}$
$d_{13}=d_{35}=d_{57}=d_{17}=A \sqrt{2 T}=\sqrt{2 \varepsilon_{s i}}, d_{24}=d_{46}=d_{68}=d_{82}=A \sqrt{T}=\sqrt{\varepsilon_{s,}}$
$d_{15}=d_{37}=d_{\max }=2 A \sqrt{T}=2 \sqrt{\varepsilon_{s i}}, d_{25}=d_{85}=d_{14}=d_{16}=\frac{A \sqrt{10 T}}{2}$
$\left|\mathbf{s}_{\mathbf{1}}\right|=\left|\mathbf{s}_{3}\right|=\left|\mathbf{s}_{5}\right|=\left|\mathbf{s}_{7}\right|=A \sqrt{T}$
$\left|\mathbf{s}_{2}\right|=\left|\mathbf{s}_{4}\right|=\left|\mathbf{s}_{6}\right|=\left|\mathbf{s}_{8}\right|=A \sqrt{\frac{T}{2}}$
b. Since QAM is two dimensional, for block diagrams of correlator and MF, we benefit from Fig. 6.7 of ECE376_ Dimensionality of Signals_ASK_PSK_QAM_FSK_Jan 2013_HTE, which is not reproduced here to save space. Below we just give the outputs.

If $s_{1} t$ is sent from the transmitter in then the output from the upper and lower braches of the correlator will be after sampling will be

$$
\begin{align*}
& y_{1}=\int_{0}^{T} r(t) \psi_{1}(t) d t=\int_{0}^{T} s_{1}(t) \psi_{1}(t) d t+\int_{0}^{T} n(t) \psi_{1}(t) d t=s_{11}+n_{1}=A \sqrt{T}+n_{1} \\
& y_{2}=\int_{0}^{T} r(t) \psi_{2}(t) d t=\int_{0}^{T} s_{1}(t) \psi_{2}(t) d t+\int_{0}^{T} n(t) \psi_{2}(t) d t=s_{12}+n_{2}=0+n_{2} \tag{1.3}
\end{align*}
$$

We know that output from MF will be identical to (1.3) at the time of sampling at $t=T$ which means that we can construct the received vector \mathbf{r} that we supply to the detector and which will be used in the decision making process, as follows

$$
\mathbf{r}=\left[\begin{array}{l}
r_{1} \tag{1.4}\\
r_{2}
\end{array}\right]=\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]
$$

c. Using (1.4), we evaluate correlation metrics $C \quad \mathbf{r}, \mathbf{s}_{m}$ for $m=1 \cdots 8$ as follows

$$
\begin{align*}
& C\left(\mathbf{r}, \mathbf{s}_{\mathbf{m}}\right)=2 \mathbf{s}_{\mathbf{m}} \cdot \mathbf{r}-\left\|\mathbf{s}_{\mathbf{m}}\right\|^{2}, m=1 \cdots 8 \\
& m=1, C\left(\mathbf{r}, \mathbf{s}_{\mathbf{1}}\right)=2 \mathbf{s}_{\mathbf{1}} \cdot \mathbf{r}-\left\|\mathbf{s}_{\mathbf{1}}\right\|^{2}=2[A \sqrt{T}, 0]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-A^{2} T=A^{2} T+2 A n_{1} \sqrt{T} \\
& m=2, C\left(\mathbf{r}, \mathbf{s}_{2}\right)=2 \mathbf{s}_{\mathbf{2}} \cdot \mathbf{r}-\left\|\mathbf{s}_{2}\right\|^{2}=2\left[\frac{A}{2} \sqrt{T}, \frac{A}{2} \sqrt{T}\right]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-\frac{A^{2} T}{2}=\frac{A \sqrt{T}}{2}\left(2 n_{1}+2 n_{2}+A \sqrt{T}\right) \\
& m=3, C\left(\mathbf{r}, \mathbf{s}_{3}\right)=2 \mathbf{s}_{\mathbf{3}} \cdot \mathbf{r}-\left\|\mathbf{s}_{\mathbf{3}}\right\|^{2}=2[0, A \sqrt{T}]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-A^{2} T=-A^{2} T+2 A n_{2} \sqrt{T} \\
& m=4, C\left(\mathbf{r}, \mathbf{s}_{4}\right)=2 \mathbf{s}_{4} \cdot \mathbf{r}-\left\|\mathbf{s}_{4}\right\|^{2}=2\left[-\frac{A}{2} \sqrt{T}, \frac{A}{2} \sqrt{T}\right]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-\frac{A^{2} T}{2}=-\frac{A \sqrt{T}}{2}\left(2 n_{1}-2 n_{2}+3 A \sqrt{T}\right) \\
& m=5, C\left(\mathbf{r}, \mathbf{s}_{\mathbf{5}}\right)=2 \mathbf{s}_{\mathbf{5}} \cdot \mathbf{r}-\left\|\mathbf{s}_{\mathbf{5}}\right\|^{2}=2[-A \sqrt{T}, 0]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-A^{2} T=-3 A^{2} T+2 A n_{1} \sqrt{T} \\
& m=6, C\left(\mathbf{r}, \mathbf{s}_{6}\right)=2 \mathbf{s}_{6} \cdot \mathbf{r}-\left\|\mathbf{s}_{6}\right\|^{2}=2[0,-A \sqrt{T}]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-\frac{A^{2} T}{2}=\frac{A \sqrt{T}}{2}\left(2 n_{1}+2 n_{2}+3 A \sqrt{T}\right) \\
& m=7, C\left(\mathbf{r}, \mathbf{s}_{7}\right)=2 \mathbf{s}_{7} \cdot \mathbf{r}-\left\|\mathbf{s}_{7}\right\|^{2}=2\left[0,-\frac{A}{2} \sqrt{T}\right]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-A^{2} T=-A^{2} T-2 A n_{2} \sqrt{T} \\
& m=8, C\left(\mathbf{r}, \mathbf{s}_{\mathbf{8}}\right)=2 \mathbf{s}_{\mathbf{8}} \cdot \mathbf{r}-\left\|\mathbf{s}_{\mathbf{8}}\right\|^{2}=2\left[\frac{A}{2} \sqrt{T},-\frac{A}{2} \sqrt{T}\right]\left[\begin{array}{l}
A \sqrt{T}+n_{1} \\
n_{2}
\end{array}\right]-\frac{A^{2} T}{2}=\frac{A \sqrt{T}}{2}\left(2 n_{1}-2 n_{2}+A \sqrt{T}\right) \tag{1.6}
\end{align*}
$$

The correct decision region for \mathbf{s}_{1} for the case of $s_{1}(t)$ being transmitted is determined by the following inequalities and corresponding conditions.

$$
\left.\begin{array}{l}
C\left(\mathbf{r}, \mathbf{s}_{1}\right)>C\left(\mathbf{r}, \mathbf{s}_{2}\right): \frac{A}{2} \sqrt{T}(\overbrace{n_{1}+A \sqrt{T}}^{r}+n_{1}-2 n_{2} \\
r_{2}
\end{array}\right)>0 \rightarrow r_{2}<r_{1}-\frac{A}{2} \sqrt{T},
$$

The computations of (1.6) and (1.7) are in ECE376_MT2017_Q1Calculations.m.
From (1.7), we need to take into account only the following inequalities

$$
\begin{equation*}
C\left(\mathbf{r}, \mathbf{s}_{1}\right)>C\left(\mathbf{r}, \mathbf{s}_{2}\right) \text { and } C\left(\mathbf{r}, \mathbf{s}_{1}\right)>C\left(\mathbf{r}, \mathbf{s}_{\mathbf{8}}\right) \tag{1.8}
\end{equation*}
$$

since the other inequalities are already covered by the ones given in (1.8).

Fig. 1. 4 Decision regions for \mathbf{s}_{1} against $\mathbf{s}_{2}, \mathbf{s}_{8}$ and combined correct decision region for \mathbf{s}_{1}.
To find the probability of error for \mathbf{s}_{1}, we need to integrate in the shaded area of Fig. 1.4, which is left as an exercise.
2. (30 Points) Answer the following questions as True or False. For the False ones give the correct answer or the reason. For the True ones, justify your answer
a) The demodulation of FM signal can be done by a varactor diode : False, the varactor diode is used to obtain FM as explained on pp. 12-13 of lecture notes entitled, "ECE 376_AM_FM Demodulation_Jan 2013_HTE".
b) In envelope detection of full AM, we use a diode and a low pass filter : True, as explained on pp. 5-7 of lecture notes entitled, "ECE 376_AM_FM Demodulation_Jan 2013_HTE".
c) For demodulation, we use a local carrier at the receiver which is phase synchronized to the one sent from the transmitter: This is one way of performing demodulation, but this is not necessary for full AM as given above.
d) PSK is multidimensional : False, PSK is two dimensional as explained on pp. 12-13 of lecture notes entitled, " ECE376_ Dimensionality of Signals_ASK_PSK_QAM_FSK_Jan 2013_HTE".
e) As the number of dimensionality of the signal increases, the bandwidth requirement also increases : True, as explained on pp. 22 of lecture notes entitled, " ECE376_ Dimensionality of Signals_ASK_PSK_QAM_FSK_Jan 2013_HTE".
f) The constellation diagram of QAM contains 8 signal vectors : False, it can take on any Mary value.

